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COMPLEHENTARY SPANNING TREES 

BY 

GEÜRC.E B DANTZIC 

Given a network G whose arcs partition into non-overlapping 

"clubs" (sets) R.. D. Ray Fulkerson has considered the problem of 

constructing a spanning tree such that no two of its arcs belong to 

(represent) the same club and has stated necessary and sufficient 

conditions for such trees to exist [!]• 

(1) "   i   °   i- <w-^      (u 

In Example (1) no such "representative" tree exists. When each club 

R. consists of exactly two arcs, we shall refer to each of the arc 

pair as the "complement" of the other, and the representative tree as 

a complementary tree.  In Example (2) the heavy arcs {1,2,3} 

(2) 

form such a tree.      The complements of (1,2,3), namely {l,,2',3,) 

form a cycle. However, ii' ,2',3)    form another complementary tree. 

Our objective is to prove 

Main Theorem: If there exists one complementary tree, there exists at 

least two. 

The general idea is to pass from one complementary tree to the 

other by a sequence of "adjacent" (or "neighboring") trees which are 



"almost" complementary.  An almost-complementary tree Is defined to be 

one where each set R. furnishes exactly one arc with the exception of 

one "special" set which furnishes two and one other set which furnishes 

none.  In Example (2), the almost complementary trees with respect to 

the special set {l,!*) are U,!'^}, {1,1',2'}, U.l'.S} and {1,1',3'}. 

A sequence leading from {1,2,3) to 11',2',3) along a path of adjacent 

almost-complementary trees is (1,2,3), {1,1*,3), {2,,1,,3). 

Two trees are said to be adjacent or neighbors if they differ by 

one arc. The general procedure for generating a sequence of adjacent 

almost-complementary trees is as follows: Start with a complementary 

tree- Add to it any out-of-tree arc, say A', forming a cycle. 

Step I; If either A or A* is another arc of the cycle, 

delete it and terminate«^/JDTe new tree thus formed is complementary. 

If not. 

Step II; Arbitrarily*drop some other arc of the cycle forming an 

adjacent almost-complementary tree with respect to AA* 

Step III; Introduce as out-of-tree arc the complement of the 

arc dropped in Step II.  Return to Step I. 

Note especially that the sequence of almost-complementary trees 

thus generated all contain A, A' as the special pair of arcs. In 

all discussion that follows the "almost" is defined with respect to a 

fixed pair of special arcs. 

* This will be changed later. 
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Let us see what happens  If we apply these steps to Example  (3) 

The given starting complementary tree Is ia,b,c,d,e,s}   , see  (4). 

(Aa) 

In (4a) we have chosen s' as the starting out-of-tree arc so 

that the sequence (path) of adjacent almost-complementary trees 

generated by the rules will be with respect to the special set 8,8* . 

According to Step II we can elect to break the cycle by arbitrarily 

dropping arc a to obtain (5). Since a is dropped. Step III requires 

that a' , its complement, must be the next out-of-tree arc see (5a). 

(5a) 

We arbitrarily break the cycle by dropping d, see (6), then in 

(6a) introduce its complement d*. Next we drop e and introduce e', 

see (7) and (7a). Next we drop d* and introduce back d, see (8) and 

(8a). wcxt we drop e* and introduce back e, see (9) and (9a). 



(6) 

^-^ 
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Note that (9a) is Identical to (Sa) and our rules allow us to drop 

d so that we return to (6), i.e., the path circles back on itself. 

Thus we see in Example (3) that the idea of moving from one almost- 

complementary tree to the next by arbitrarily dropping an arc of a cycle 

fails to terminate with another complementary tree.  Instead it generates 

a cycle of almost-complementary trees that repeat ad infinitum.  Note 

that Tree (6) is adjacent to Tree (5) as well as Tree (7) and Tree (9). 

What we need is a modified rule for dropping an arc of a cycle so 

that each almost-complementary tree so generated is adjacent to exactly 

two others, one or both of which could be completely complementary. If 

Llils could be arranged it is easy to see that the method would never repeat 



an almost-complementary tree nor could it return to the original 

complementary tree because we have arranged it so that there is only 

one path out of it. We need a dropping rule which would give rise to 

a set S of trees which satisfy the following abstract properties: 

(1)     Given a finite set S and a relation "neighbor", 

(il)    If 1 is a neighbor of J then j is a neighbor 
of 1. 

(ill)   No element has more than two neighbors. 

(iv)    At least one element has exactly one neighbor. 

Theorem: S contains at least two elements with exactly one 

neighbor. 

This type of theorem is used by Euler to resolve the Koenigsberg 

Bridge problem. Lemke and Howson were the first to turn the underlying 

idea into a constructive procedure for proving theorems by rigging the 

network relations to have the abstract properties. Lemke showed that 

the complementary pivot algorithms used to solve linear and positive- 

definite quadratic programming problems could be modified to find 

complementary solutions to bi-matrix games and certain other non-convex 

problems [See References 2-9.]. 

Curtis Eaves tells the following Ghost Story to illustrate Lemke's 

principle-  Once upon a time, there was a haunted house. A brave lad 

entered the front door.  (Doors are marked by an x in (10) )  Suddenly, 
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■" 

he saw a Ghost.  He turned to flee but a gust of wind slammed shut the 

front door and it would not open.  He ran from the room through a serond 

door only to discover himself in another room with a Ghost.^  He fled 

from room to room with a Ghost hoping to find sanctuary by exiting 

through a door which led to the outside or led to a room without a Ghost. 

The house had property that if a room contained a Ghost it had exactly 

two doors. Query, did the brave young man find Sanctuary? 

(10)  g  

G        ,    S 

 K 1 
c         " 
 X 1 ' 

G      ): G 

Lemke was able to apply his principle because his elements ("rooms") 

were a selected subset of the extreme points of a convex set.  Two elements 

were adjacent if they had an edge (door) in common. We shall establish 

the main theorem by setting up a correspondence between certain trees of 

graph G and certain extreme points of a linear program, namely the 

following network flow problem: 

Arbitrarily order the nodes in G . Next orient each arc (i,J) 

as a directed arc from i to J, if 1 •• j and from J to 1 if 

j ' i.  Assign to the arcs of the given complementary tree arbitrary 

values a.. > 0 and a.. ■ -a., if  (i,J)  is a directed arc of the 
ij Ji   ij 

tree, for all other (i,J) let a.,4 ■ 0.  Let node values b. ■ ][ a... 
i   j ij ij 



The network flow problem la then to tind x. . > U such that 
ij - 

L       xi1  ' L      xik = bl 
ieU,  J   k£V  JK   ■' 

where U, - (ll(i,j)  is a directed arc of G] 

V ■ lk|(j,k)  is a directed arc of G} 

It is well known that the arcs (i,j) corresponding to basic 

variables (feasible or not) form a tree. If feasible basic solutions 

are non-degenerate and the feasible set is bounded, then a new basic 

feasible solution can be obtained by increasing sufficiently the flow 

x.. on a directed out-of-tree arc (i,j) while adjusting the flows on 

basic arcs. The arc dropping out of the cycle will then correspond to 

the unique basic variable whose value decreased to zero. 

Uniqueness is a consequence of non-degeneracy  One way to avoid 

degeneracy is to assign as the n-1 arc flows of the starting complementary 

tree n-1 different powers of  e • 0  Arc flows in subsequent almost- 

complementary trees will then be polynomials expressions in £ which 

will be strictly positive for some range 0 < e < e . 

Boundedness is a consequence of first ordering the nodes and then 

orienting the arcs consistent with this node ordering.  If this is done 

there can be no directed cycles in G,  In general, the feasible set Is 

bounded If and only if there is no cycle in which all arcs are oriented 

In the same direction around the cycle 
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The almost-complementary trees correspond to the sequence of 

basic feasible solutions can now be easily shown to satisfy the 

conditions of Theorem 2 and the main Theorem follows as a consequence. 

: 

I 

We Illustrate the procedure on Example (3).    The letters 

d 

(11) P^' 

will now represent not only the name of the arc but also the directed 

flow on the arc. The node ordering was chosen arbitrarily. For 

starting flow in the complementary starting tree we assume 

(12a) Max 6-6 

In (12a) wc arbitrarily Introduce the out-of-tree arc s' with flow 

s' ■ 0, this causes a change of flows about the cycle in order that 

the net-flow around each node remains the same. Thus the net flow at 

node (5) in (12) is c+d »7; if s is increased from s ■ 0 to 

s ■ ö then c changes from c"4 to c«A+e; similarly, a ■ 6 

changes to a = 6 - 0. The maximum change in 0 that preserves 

feasibility is 0=6 at which value a = 0 and arc a drops out, 

see (13).  Therefore a' ■ 6 is introduced in (13a). 



(13) o^^-io    o ^Q^W) (13a) 

3 >nl3 

(15a) a 

(14) Q*r a  »o ^ >0 *^ X)  (14a) 

0 3 XF 3 »0 ^ »0 

l(j—*-*r   ^-^Je   (16a) i? 

»0 *0    Max 9-5 

Max 0=3 

Max 9-3 

Max 6-6 

<— New Complementary Tree 

Modified Algorithm; After node ordering, arc orientation, assigning basic 

feasible flows, and chosing a special basic arc, increase flow on its 

complement. 

Step 1': Drop arc of the cycle as in simplex algorithm. If arc 

dropped is a special arc, terminate.  If not. 

Step II': Introduce as incoming arc the complement of the arc 

dropped. Return to Step I'. 
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